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1 Introduction

Fuzzy sets were introduced by Zadeh as a generalization of classical set theory (Zadeh, 1965).
A fuzzy set is characterized by a membership function µ, which takes value from a crisp set to
a unit interval I = [0, 1], in order to indicate the degree of belongingness of each element to the
set under consideration. Numerous extensions and special cases of this concept have emerged
in recent years, such as, bipolar-valued fuzzy sets, complex fuzzy sets, grey sets, interval-valued
fuzzy sets, typical hesitant fuzzy sets, shadow sets, among others (Bustince et al., 2016).

An important extension is due to Atanassov, and consists in the addition of a non-
membership function ν, satisfying the condition 0 6 µ+ν 6 1 (Atanassov, 1986). The notion of
A-IFS (Atanassov’s intuitionistic fuzzy set) provides a flexible framework to interpret vagueness
and uncertainty, with hesitation margin π = 1 − µ − ν. The minimal value π = 0 indicates
absence of uncertainty, which characterizes a fuzzy set in the Zadeh sense. The A-IFS concept
is useful for modeling many types of practical problems (Atanassov, 2012). For example, in
electoral polls, a candidate x may have 45% of intentions to vote in favor, 31% against, while
the margin of 24% of undecided voters remains. This fact can be expressed by means of the
triad 〈x, 0.45, 0.31〉, where 0 6 µ + ν = 0.45 + 0.31 = 0.76 6 1, and π = 0.24. Considering
N respondents, if each survey opinion produces a value µi and νi then, for each candidate x,
the expression 〈x, 1

N

∑N
i=1 µi(x), 1

N

∑N
i=1 νi(x)〉 based on usual averages makes sense and mean-

ing. Now, since the variable x has a nominal scale, it only remains to establish some kind of
mechanism to compare the options of each candidate.
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On the other hand, several experts could express their estimate regarding a specific date,
where presumably a certain event should occur with greater probability. In this case, the fore-
casting problem could be represented using non-negative real number intervals, on which it is
possible to consider two functions: one of membership and the other of non-membership. This
type of problem can be modeled by means of the so-called triangular fuzzy numbers, but in the
A-IFS sense (Seikh et al., 2013).

There are also situations that do not satisfy the conditions of the A-IFS model. Indeed, an

individual can evaluate with
√
3
2 the degree to which an alternative ai satisfies a certain criterion

Cj and, at the same time, in another item evaluate with 1
2 the degree to which such alternative

does not satisfy the mentioned criterion. The deficiency does not lie in the design of the attitude
scale, nor in the degree of validity of the response, but in the underlying mathematical model.
To overcome this obstacle, Yager introduced Pythagorean fuzzy sets under the µ2 + ν2 6 1
condition (Yager, 2013), which does fit the type of responses mentioned above.

Yager’s approach serves to moderate relatively exaggerated responses on attitude scales,
but there are also cases where the individual expresses remarkably conservative responses with
observed values that satisfy the A-IFS model, but are too small. For this case, there is also
a model that uses radicals instead of squares, namely, the intuitionistic fuzzy sets of root-type
where 1

2

√
µ + 1

2

√
ν 6 1 (Srinivasan & Palaniappan, 2012). In the present work we consider a

generalization of the A-IFS, which encompasses both the Pythagorean and the root type cases
(Jamkhaneh & Nadarajah, 2015; Jamkhaneh & Garg, 2018). In particular, we analyze the
algebraic nature of this class of generalized fuzzy set, once it has been endowed with an addition
operation, a dot product and a certain preorder relation. We show that this structure is a
bounded left R>0-semimodule. We also analyze some metric properties of δ-fuzzy sets, which
allows us to introduce a new approach to the concept of generalized fuzzy mean. Finally, we
present an example where the calculation of a δ-fuzzy mean is applied.

2 An algebraic approach to δ-fuzzy sets

Next we will present the concept of the δ-fuzzy set, developed by Jamkhaneh and other authors,
as well as the main properties (Jamkhaneh & Nadarajah, 2015; Jamkhaneh & Garg, 2018). Our
approach will follow a predominantly algebraic path. As Milošević et al. point out (Milošević
et al., 2021), this generalization can be approached in other very similar ways, such as the
case of Yager’s q-th rung orthopair fuzzy sets (Yager, 2017), and the case of A-IFS of nth type
(Atanassov & Vassilev, 2018).

Definition 1. Let δ ∈ R>0 and let X = {xi}i∈I a nonempty universe of discourse. A set Ã is
called δ-fuzzy if there are two aggregation functions µ

Ã
: X → [0, 1] and ν

Ã
: X → [0, 1], with

0 6 µδ
Ã

(x) + νδ
Ã

(x) 6 1 (∀x ∈ X), such that

Ã = {〈x, µ
Ã

(x), ν
Ã

(x)〉|x ∈ X}.

The functions µ
Ã

(x) y ν
Ã

(x) denote, respectively, the degree of membership and degree of non-

membership of element x to the set Ã. In this case, it is said that the expression π
Ã

(x) =

[1− µδ
Ã

(x)− νδ
Ã

(x)]
1
δ is called the degree of hesitation or indeterminacy of x to Ã.

In a brief way, we will use the abbreviated notation 〈µ
Ã
, ν
Ã
〉 to refer to the set Ã =

{〈x, µ
Ã

(x), ν
Ã

(x)〉|x ∈ X}. The above definition gives rise to several particular concepts, already
used previously in the development of fuzzy approaches. For example, if δ = 1, the concept of
A-IFS results directly. In addition, if ν

Ã
= 1 − µ

Ã
, then Zadeh’s seminal definition of a fuzzy

set is obtained, where π
Ã

= 0. If we also consider µ
Ã

= χA : X → {0, 1} as the characteristic
function of A in X, that is,

µ
Ã

(x) =

{
1 if x ∈ A,
0 if x 6∈ A.
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then a crisp interpretation of the concept of set results. Cases δ = 2 and δ = 3 coincide
with the definitions of Pythagorean fuzzy set (Yager, 2013) and Fuzzy sets of Third Type
(Begum & Srinivasan, 2017), respectively. The intuitionistic fuzzy sets of root-type (Srinivasan
& Palaniappan, 2012) does not conform to the general notion considered for δ = 1

2 , which has
already been indicated previously (Atanassov & Vassilev, 2018). It is clear that if µ, ν, δ1, δ2 are
real numbers such that µ, ν ∈ [0, 1] and 0 < δ1 < δ2, then from the condition 0 6 µδ1 + νδ1 6 1
it follows that 0 6 µδ2 + νδ2 6 1. Therefore, the following property takes place.

Theorem 1. If δ1 < δ2, then every set δ1-fuzzy is also δ2-fuzzy.

Figure 1: Inclusion chains in δ-fuzzy sets

From this theorem, it can be seen that intuitionistic fuzzy sets of root-type constitute a
proper subset of A-IFS. In turn, A-IFS are fully included in Pythagorean fuzzy sets and so
on, forming an inclusion chains as illustrated in Figure 1, where the unit square [0, 1] × [0, 1]
constitutes the supremum set. As an example, point Ã = 〈0.82, 0.61〉 represents the generalized
intuitionist component for a certain x-value of the universe of discourse. Its coordinates are
enclosed by a kind of lunula, delimited by the curves µ2

Ã
+ ν2

Ã
= 1 and µ3

Ã
+ ν3

Ã
= 1, within the

first quadrant. The components of Ã were found experimentally in an empirical study related
to subjective perception, for the case of an individual and under specific conditions (Cruz &
Cables, 2021). Obviously the Pythagorean model does not comprise point Ã, therefore it is
necessary to determine the minimum value of δ, so that the mathematical model is adequate
and describes well each evidence, in all or at least in most of the empirical observations.

The operations of union and intersection of δ-fuzzy sets can be defined in a generalized way,
through triangular norms and triangular conorms (Deschrijver & Kerre, 2002).

Definition 2. For two δ-fuzzy sets Ã and B̃, the generalized union and intersection operators
are defined respectively as follows:

Ã∨B̃ = 〈S(ν
Ã
, ν
B̃

), T (µ
Ã
, µ

B̃
)〉,

Ã∧B̃ = 〈T (µ
Ã
, µ

B̃
), S(ν

Ã
, ν
B̃

)〉,

where T is any t-norm and S is any t-conorm.

Based on this concept, it is possible to introduce operations between δ-fuzzy sets. One of
them consists in developing a certain kind of sum, where each element of X has membership
and non-membership values dependent on µ and ν in the original sets. This is the case in the
following definition.
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Definition 3. Let Ã and B̃, two δ-fuzzy sets of the universe of discourse X. The sum δ-fuzzy
of Ã and B̃ is defined as follows

Ã⊕ B̃ = 〈(µδ
Ã

+ µδ
B̃
− µδ

Ã
µδ
B̃

)
1
δ , ν

Ã
ν
B̃
〉.

It can be verified that the function S : [0, 1]× [0, 1]→ [0, 1], defined by S(x, y) = (xδ + yδ −
xδyδ)

1
δ satisfies the axioms of a t-conorm:

a) Commutativity: S(x, y) = S(y, x)

b) Associativity: S(x, S(y, z)) = S(S(x, y), z)

c) Monotonicity: S(x, y) 6 S(z, t) si x 6 z y y 6 t

d) Boundary condition: S(1, 1) = 1 y S(x, 0) = x.

Also, the function T : [0, 1] × [0, 1] → [0, 1] defined by T (x, y) = xy is a t-norm, since it
satisfies the same previous axioms, except the fourth where 1 is exchanged for 0, i.e., T (0, 0) = 0
and T (x, 1) = x. Therefore, the set Ã ⊕ B̃, constitutes a particular type of generalized δ-fuzzy
union. It can be noted that ⊕ is a commutative and closed operation in the powerset P̃(X). In
addition, a brief arithmetic work reveals that for all δ-fuzzy sets Ã, B̃, C̃ ∈ P̃(X), this operation
also fulfills the associative property (Ã⊕ B̃)⊕ C̃ = Ã⊕ (B̃ ⊕ C̃). Furthermore, there are exactly
three idempotent elements: 〈0, 1〉, 〈0, 0〉, 〈1, 0〉 ∈ P̃(X), of which the set Õ = 〈0, 1〉, satisfies that
for all δ-fuzzy set Ã ∈ P̃(X) it follows that Õ ⊕ Ã = Ã⊕ Õ = Ã. With the exception of Õ, all
elements in P̃(X) have no invertible element. In short, the following theorem holds.

Theorem 2. The algebraic structure (P̃(X),⊕) constitutes an abelian monoid, that is, a com-
mutative semigroup provided with the identity element Õ = 〈0, 1〉.

Similarly, it is possible to define a product by reasoning in a dual way, that is Ã ⊗ B̃ =
〈µ
Ã
µ
B̃
, (νδ

Ã
+ νδ

B̃
− νδ

Ã
νδ
B̃

)
1
δ 〉, as well as inclusion relations and also union, intersection and com-

plement operations (Jamkhaneh & Nadarajah, 2015; Jamkhaneh & Garg, 2018). The structure
(P̃(X),⊗) is also an abelian monoid, whose identity element is Ĩ = 〈1, 0〉. In general, neither
of these operations ⊕ and ⊗ distributes with respect to the other. It can even be verified that
Ã⊗ (B̃⊕ C̃) = (Ã⊗ B̃)⊕ (Ã⊗ C̃) iff Ã = Ĩ, or if at least one of the Ã, B̃, and C̃ values is equal
to Õ. In a similar way to the Pythagorean case (Peng & Yang, 2015), the complementation can
be defined as 〈µ, ν〉c = 〈ν, µ〉 (Jamkhaneh & Nadarajah, 2015), from which Morgan’s laws are
valid in delta-fuzzy sets: (Ã⊕ B̃)c = Ã

c⊗ B̃c
and (Ã⊗ B̃)c = Ã

c⊕ B̃c
. In the present work, we

do not address the relationships between ⊕ and ⊗, but rather delve into the (P̃(X),⊕) monoid,
provided with a dot product.

Definition 4. The mapping ∗ : R>0 × P̃(X)→ P̃(X), (r, Ã)→ r ∗ Ã, where

r ∗ Ã = 〈[1− (1− µδ
Ã

)r]
1
δ , νr〉

is a dot product in a P̃(X).

This definition is consistent, since r ∗ Ã is also a δ-fuzzy set. Indeed, as 1 − µδ
Ã
> νδ

Ã
, we

have that 0 6 µδ
r∗Ã

+ νδ
r∗Ã

= 1− (1− µδ
Ã

)r + νrδ
Ã

6 1− (νδ
Ã

)r + νrδ
Ã

= 1. On the other hand, it

is well known that (R>0,+, ·) is an Abelian semiring, for which the following properties are also
verified for all r, s ∈ R>0, and all Ã, B̃ ∈ P̃(X):

a) (rs) ∗ Ã = r ∗ (s ∗ Ã)
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b) r ∗ (Ã⊕ B̃) = (r ∗ Ã)⊕ (r ∗ B̃)

c) (r + s) ∗ Ã = (r ∗ Ã)⊕ (s ∗ Ã)

d) 1 ∗ Ã = Ã

e) r ∗ Õ = Õ = 0 ∗ Õ

These five properties constitute the axioms defined by Golan for the structure of an left R-
semimodule (see Golan, 2003, p. 101), for a given abelian monoid and with respect to a certain
semiring R. Properties (a), (d) and (e) follow directly from the Definition 4. Next, we will prove
property (c).

(r ∗ Ã)⊕ (s ∗ Ã) = 〈[1− (1− µδ
Ã

)r]
1
δ , νr

Ã
〉 ⊕ 〈[1− (1− µδ

Ã
)s]

1
δ , νs

Ã
〉

= 〈
{

1− (1− µδ
Ã

)r + 1− (1− µδ
Ã

)s − [1− (1− µδ
Ã

)r][1− (1− µδ
Ã

)s]
} 1
δ , νr+s

Ã
〉

= 〈[1− (1− µδ
Ã

)r+s]
1
δ , νr+s

Ã
〉

= (r + s) ∗ Ã.

Property (b) is verified using similar resources. Consequently, we arrive at the following
theorem:

Theorem 3. The abelian monoid (P̃(X),⊕) provided with the dot product ∗ constitutes an left
R>0-semimodule.

To conclude this section, we will address the problem related to the ordering of δ-fuzzy sets.
We will start from the following definition.

Definition 5. Let Ã and B̃ be two δ-fuzzy sets. We will say that Ã ≺ B̃ iff there are a δ-fuzzy
set M̃ so that Ã⊕ M̃ = B̃.

This kind of relation satisfies the properties of reflexivity and transitivity in any monoid
and is called canonical preordering set (Gondran & Minoux, 1984) and also difference ordered
set (Golan, 2003). In the P̃(X) set, the relation does not induce a partial order, since the

antisymmetry fails in a general way. Furthermore, in Definition 5, if the set {M̃ | Ã⊕ M̃ = B̃}
is either empty or a singleton, whenever Ã 6= B̃, then the relation ≺ constitutes a weak uniquely
difference ordered (WUDO in Golan, 2003). This notion allows, in Golan’s sense, to define the
element B̃ 	 Ã by setting

B̃ 	 Ã =


〈(

µδ
B̃
−µδ

Ã

1−µδ
Ã

) 1
δ
,
ν
B̃
ν
Ã

〉
if µ

B̃
> µ

Ã
, ν

Ã
6= 0, ν

B̃
6 min

x∈X

{
ν
Ã
,
ν
Ã
π
B̃

π
Ã

}
,

Õ = 〈0, 1〉 if not.

This difference set has already been previously analyzed in the Pythagorean case (Peng &
Yang, 2015), where this set is unique and satisfies B̃ 	 Õ = B̃ and the cancellation property
(B̃ 	 Ã)⊕ Ã = B̃ whenever Ã ≺ B̃. In general, the following statement is valid.

Theorem 4. The binary relation ≺ is a preorder, compatible with (P̃(X),⊕, ∗) as right R>0-
semimodule.

Proof. The algebraic structure (P̃(X),⊕) is a monoid, therefore the associativity and the ex-
istence of the identity element are verified. Since Ã ⊕ O = Ã we have Ã ≺ Ã, that is, ≺ is a
reflexive relation. If Ã ≺ B̃ and B̃ ≺ C̃, it follows respectively that there exist M̃ and Ñ such that
Ã⊕M̃ = B̃ and B̃⊕Ñ = C̃. Then, it turns out that C̃ = B̃⊕Ñ = (Ã⊕M̃)⊕Ñ = Ã⊕ (M̃⊕Ñ)

and it is enough to choose S̃ = M̃ ⊕ Ñ to conclude that Ã ≺ C̃, so the relation is also transitive.
In short, the binary relation ≺ is a preorder. On the other hand, to test compatibility with the
closed addition and dot product, the following properties must be verified (Golan, 2003, p. 137):
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a) Ã ≺ B̃ ⇒ Ã⊕ C̃ ≺ B̃ ⊕ C̃, ∀Ã, B̃, C̃ ∈ P̃(X)

b) (Ã ≺ B̃ ∧ 0 6 r)⇒ r ∗ Ã ≺ r ∗ B̃, ∀Ã, B̃ ∈ P̃(X), ∀r ∈ R>0

c) (r 6 s ∧ Õ ≺ Ã)⇒ r ∗ Ã ≺ s ∗ Ã, ∀r, s ∈ R>0, ∀Ã ∈ P̃(X).

The first case results directly from the definition of ≺ and the commutativity of ⊕. Indeed, if
Ã ≺ B̃ then, there exist M̃ such that Ã ⊕ M̃ = B̃ and thereupon B̃ ⊕ C̃ = (Ã ⊕ M̃) ⊕ C̃ =

(Ã⊕ C̃)⊕ M̃ . Therefore, Ã⊕ C̃ ≺ B̃⊕ C̃. The second case follows from the distributivity of the
scalar product with respect to the sum of δ-fuzzy sets. From the relation Ã ≺ B̃, the existence of
M̃ is deduced such that Ã⊕M̃ = B̃. So it turns out that r ∗ B̃ = r ∗ (Ã⊕M̃) = (r ∗ Ã)⊕ (r ∗M̃),

since r > 0. Then, we have that r∗Ã ≺ r∗B̃, considering the δ-fuzzy set S̃ = r∗M̃ . In the third
case, we have that there exists t > 0 such that s = r+t. Then s∗Ã = (r+t)∗Ã = (r∗Ã)⊕(t∗Ã),
which implies that r ∗ Ã ≺ s ∗ Ã, since S̃ = t ∗ Ã is a δ-fuzzy set.

Obviously, from the equality Õ ⊕ Ã = Ã we deduce that Õ ≺ Ã. After considering f(X̃) =
Ĩ 	 X̃, we obtain a sort of δ-fuzzy characteristic function

f(X̃) =

{
Ĩ if X̃ 6= Ĩ
Õ if X̃ = Ĩ.

Note that Ã⊕ (Ĩ 	 Ã) = Ã⊕ f(Ã) = Ã1⊕Ĩ = Ĩ so, taking into account the existence of the
δ-fuzzy set S̃ = f(Ã), we see that Ã ≺ Ĩ. Therefore, we have a bounded preorder Õ ≺ Ã ≺ Ĩ,
for all δ-fuzzy set Ã ∈ P̃(X). This fact is analogous to a property of the set of natural numbers,
where the partial order induced by the divisibility relation is bounded, precisely by the identity
elements for the product and the sum respectively, that is: 1 ≺ n ≺ 0, for all n ∈ N.

3 Some metric properties of δ-fuzzy sets

In this section we present a concept of distance for δ-fuzzy sets, which generalize some particular
cases described in the literature. First, we will restrict our analysis to a real universe of discourse,
where we differentiate between discrete and continuous cases.

Definition 6. The distance between two discrete δ-fuzzy sets Ã and B̃, of the universe of
discourse X = {xi}16i6m ⊂ R, is defined by the expression

d(Ã, B̃) =
1

2m

m∑
i=1

(|µδ
Ã

(xi)− µδB̃(xi)|+ |νδÃ(xi)− νδB̃(xi)|+ |πδÃ(xi)− πδB̃(xi)|).

The expression d(Ã, B̃) is a non-negative and also symmetric with respect to its variables.
We have d(Ã, B̃) 6= 0 iff there exists a i such that µ

Ã
(xi) 6= µ

B̃
(xi), or ν

Ã
(xi) 6= ν

B̃
(xi), or

π
Ã

(xi) 6= π
B̃

(xi), then d(Ã, B̃) 6= 0 and that is, d(Ã, B̃) = 0 ⇔ Ã = B̃. Triangular inequality
is a direct consequence of using the property |x − y| + |y − z| > |x − z|, when comparing
each modular expression for the membership, non-membership, and indeterminacy functions,
respectively. In summary, d satisfies the distance axioms, so the Definition 6 is consistent. Note
that for δ = 1, results in a Hamming distance for A-IFS (Szmidt, 2014). If δ = 2, the result is
a normalized distance between Pythagorean fuzzy sets (Peng & Yang, 2015; Zhang & Xu, 2014;
and cf. Ejegwa, 2018).

On the other hand, for the case of two Riemann integrable functions µ(x) and ν(x) on a
continuum X as discursive universe, we have the following analogous definition that generalizes
the one corresponding to A-IFS (cf. Tcvetkov et al., 2009).
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Definition 7. The distance between two δ-fuzzy sets Ã and B̃, of the universe of discourse
X = [a, b] ⊂ R, is defined by the expression

d(Ã, B̃) =
1

2(b− a)

∫ b

a
(|µδ

Ã
(x)− µδ

B̃
(x)|+ |νδ

Ã
(x)− νδ

B̃
(x)|+ |πδ

Ã
(x)− πδ

B̃
(x)|)dx

Here are some properties that are derived from the concept of distance. We will only refer
to the case in which X is a real interval, since the discrete case develops in an analogous way.
Theorem 5 reveals that the distance between any two triangular δ-fuzzy numbers is always
bounded.

Theorem 5. Let Ã and B̃ be two δ-fuzzy sets, defined on the interval X = [a, b] ⊂ R. Then
d(Ã, B̃) 6 1.

Proof. Successively it turns out that

d(Ã, B̃) =
1

2(b− a)

∫ b

a

{
|µδ
Ã

(x)− µδ
B̃

(x)|+ |νδ
Ã

(x)− νδ
B̃

(x)|+ |πδ
Ã

(x)− πδ
B̃

(x)|
}
dx

=
1

2(b− a)

∫ b

a

{
|µδ
Ã

(x)− µδ
B̃

(x)|+ |νδ
Ã

(x)− νδ
B̃

(x)|+

+|(1− µδ
Ã

(x)− νδ
Ã

(x))− (1− µδ
B̃

(x)− νδ
B̃

(x))|
}
dx

=
1

2(b− a)

∫ b

a

{
|µδ
Ã

(x)− µδ
B̃

(x)|+ |νδ
Ã

(x)− νδ
B̃

(x)|+

+|µδ
Ã

(x)− µδ
B̃

(x) + νδ
Ã

(x)− νδ
B̃

(x)|
}
dx.

Since the δ-fuzzy condition 0 6 µδ + νδ 6 1 is fulfilled, we have that the last modular
expression |µδ

Ã
− µδ

B̃
+ νδ

Ã
− νδ

B̃
| = |µδ

Ã
+ νδ

Ã
− (µδ

B̃
+ νδ

B̃
)| 6 1 for all x. So, the last integrand

function has the form f(x, y) = |x| + |y| + |x + y|, where |x| 6 1, |y| 6 1, and |x + y| 6 1,
which reaches the maximum value f(x, y) = 2 just on the boundary of its region of definition.

Therefore, it is finally obtained that d(Ã, B̃) 6 1
2(a−b)

∫ b
a 2dx = 1

2(b−a)2(b− a) = 1.

Let us denote Π
Ã

= 1
(b−a)

∫ b
a π

δ
Ã

(x)dx. The following theorem reveals that the distance
between full security and full insecurity exceeds 1 in a measure of uncertainty, precisely in an
amount equal to Π

Ã
.

Theorem 6. For all δ-fuzzy sets Ã ∈ P̃(X), X = [a, b] ⊂ R, it is fulfilled that d(Ã, Õ)+d(Ã, Ĩ) =
1 + Π

Ã
.

Proof. We have

d(Ã, Õ) =
1

2(b− a)

∫ b

a

{
|µδ
Ã

(x)− 0|+ |νδ
Ã

(x)− 1|+ |1− µδ
Ã

(x)− νδ
Ã

(x)− 0|
}
dx

=
1

2(b− a)

∫ b

a

{
µδ
Ã

(x) + 1− νδ
Ã

(x) + 1− µδ
Ã

(x)− νδ
Ã

(x)
}
dx

=
1

2(b− a)

∫ b

a

{
2− 2νδ

Ã
(x)
}
dx

= 1− 1

(b− a)

∫ b

a
νδ
Ã

(x)dx.

Similarly it turns out that d(Ã, Ĩ) = 1 − 1
(b−a)

∫ b
a µ

δ
Ã

(x)dx. Hence, d(Ã, Õ) + d(Ã, Ĩ) = 2 −
1

(b−a)
∫ b
a {µ

δ
Ã

(x) + νδ
Ã

(x)}dx = 2− 1
(b−a)

∫ b
a {1− π

δ
Ã

(x)}dx = 1 + 1
(b−a)

∫ b
a π

δ
Ã

(x)dx = 1 + Π
Ã

.
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Theorem 7. Let Ã ≺ B̃, two δ-fuzzy sets defined on the interval X = [a, b] ⊂ R. So, it turns
out the following

a) d(Ã, Ĩ) > d(B̃, Ĩ)

b) d(Ã, Õ) 6 d(B̃, Õ)

c) d(B̃, Ĩ)− d(Ã, Ĩ) 6 Π
B̃
−Π

Ã
6 d(B̃, Õ)− d(Ã, Õ).

Proof. If Ã ≺ B̃, then exists C̃ so that Ã⊕ C̃ = B̃. Therefore, µ
Ã⊕C̃ = µ

B̃
and ν

Ã⊕C̃ = ν
B̃

. For

the case of inequality (a), we have µ
Ã⊕C̃ = (µδ

Ã
+ µδ

C̃
− µδ

Ã
µδ
C̃

)
1
δ , then µδ

Ã
+ µδ

C̃
− µδ

Ã
µδ
C̃

= µδ
B̃

which is equivalent to (1 − µδ
Ã

)(1 − µδ
C̃

) = 1 − µδ
B̃

. Since µδ
Ã
, µδ

B̃
, µδ

C̃
∈ [0, 1], it follows that

µδ
Ã

(x) 6 µδ
B̃

(x), for all x ∈ [a, b]. Hence,

1− 1

(b− a)

∫ b

a
µδ
Ã

(x)dx > 1− 1

(b− a)

∫ b

a
µδ
B̃

(x)dx

which means d(Ã, Ĩ) > d(B̃, Ĩ). Correspondingly, inequality (b) holds.
For the case of (c), we first apply Theorem 6 for both sets Ã and B̃. From this it follows

Π
B̃
−Π

Ã
= [d(B̃, Õ)− d(Ã, Õ)]− [d(Ã, Ĩ)− d(B̃, Ĩ)].

From (a) and (b) it follows that both expressions in square brackets are non-negative. From
here both inequalities of (c) follow, which concludes the proof.

4 A new approach to the δ-fuzzy mean concept

Defining a mean is not always an easy task. An illustrative example consists of the problem of
determining the geometric mean between two matrices (Lawson & Lim, 2001). To introduce the
concept of δ-fuzzy mean, we will follow an axiomatic path. For this we will require the following
property.

Theorem 8. Let Ã1 = 〈µ1, ν1〉, Ã2 = 〈µ2, ν2〉, ..., Ãn = 〈µn, νn〉 ∈ P̃(X). We have

n⊕
i=1

Ãi =

〈[
1−

n∏
i=1

(1− µδi )
] 1
δ
,

n∏
i=1

νi

〉
.

Proof. We will use the principle of complete induction. For n = 1 (basis step) we have 〈[1 −
(1 − µδ1)]

1
δ , ν1〉 = 〈µ1, ν1〉 = Ã1. Assume that the statement holds for some integer n = k > 1

(inductive step). Thus we have

k+1⊕
i=1

Ãi =
( k⊕
i=1

Ãi

)
⊕ Ãk+1

=

〈[
1−

k∏
i=1

(1− µδi )
] 1
δ
,

k∏
i=1

νi

〉
⊕ 〈µk+1, νk+1〉

=

〈{
1−

k∏
i=1

(1− µδi ) + µδk+1 −
[
1−

k∏
i=1

(1− µδi )
]
µδk+1

} 1
δ
,
( k∏
i=1

νi

)
νk+1

〉

=

〈[
1− (1− µδk+1)

k∏
i=1

(1− µδi )
] 1
δ
,
k+1∏
i=1

νi

〉

=

〈[
1−

k+1∏
i=1

(1− µδi )
] 1
δ
,
k+1∏
i=1

νi

〉
.
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Therefore, the statement is also true for n = k + 1. This completes the proof.

In particular, the case Ã1 = Ã2 = ... = Ãn = Ã produces the expression corresponding to
Definition 4, for r ∈ Z>1. This fact also suggests that such a definition is reasonably consistent.
The axiomatic approach to averages dates back to the memoirs published by J. V. Schiaparelli
in the second half of the 19th century (Schiaparelli, 1875, Observatoire de Bréra à Milan).
According to Bonferroni, a mean M of the quantities x1, x2, ..., xn, with respective weights
P1, P2, ..., Pn, is expressed by the quasi-arithmetic relation (Bonferroni, 1924):

ψ(M) =
P1ψ(x1) + ...+ Pnψ(xn)

P1 + ...+ Pn
.

where the quantities xi are different from each other, the weights Pi are all positive, and the
function ψ is continuous and strictly increasing. The convenient selection of ψ produces com-
monly used averages. For instance, ψ = x gives the weighted arithmetic mean, ψ = log x (x > 0)
the weighted geometric mean, ψ = 1

x (x > 0) the weighted harmonic mean, and so on. There are
several ways to characterize the concept of the mean M = M(x1, ..., xn) (Muliere & Parmigiani,
1993). For example, the following four requirements are relatively intuitive:

a) continuity and strict monotony in each variable xi’s,

b) symmetry, i.e, invariance to labeling of the xi’s,

c) reflexivity, i.e, when all the xi’s are equal to the same value, that value is the mean
M(x, ..., x) = x,

d) associativity, in the sense of a subset of values can be replaced by their mean with no effect
on the total mean M(x1, ..., xn) = M(x, ..., x, xk+1, ..., xn), where x = M(x1, ..., xk) and
1 < k < n− 1, n > 2.

Independently, Kolmogorov and Nagumo showed that if the conditions (a)-(d) holds, then the
mean M(x1, ..., xn) has adopt the Manferroni’s shape for weighting factors Pi = 1 (Kolmogorov,
1930; Nagumo, 1930).

Theorem 9 (Kolmogorov-Nagumo). Let I ∈ R be a closed and bounded interval and let the
application M :

⋃∞
n=1 I

n → R. Conditions (a)-(d) hold if and only if there exists a function ψ,
strictly monotonic and continuous, such that

M(x1, ..., xn) = ψ−1

(
1

n

n∑
i=1

ψ(xi)

)
.

Since (P̃(X),⊕, ∗) is a right R>0-semimodule, it is possible to consider multiplication by
1
n ∈ R>0 as a particular case of dot product, the δ-fuzzy sum of each set ψ(Ãi), as a function
of the form ψ(〈µi, νi〉) = 〈ψµ(µi), ψν(νi)〉, where ψµ : [0, 1] → [0, 1] and ψν : [0, 1] → [0, 1] are
continuous and strictly monotonous applications. In this way, we can transfer the notion of
δ-fuzzy mean M̃ to each component of a δ-fuzzy set. Effectively, if in addition each ψ(Ãi) is a
δ-fuzzy for all i = 1, 2, ..., n, then it follows that

M̃ = ψ−1
( 1

n

n⊕
i=1

ψ(Ãi)
)

= ψ−1
( 1

n

n⊕
i=1

〈
ψµ(µi), ψν(νi)

〉)
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= ψ−1
(

1

n

〈{
1−

n∏
i=1

[1− ψδµ(µi)]
} 1
δ
,
n∏
i=1

ψν(νi)

〉)
(by Theorem 8).

= ψ−1
(〈{

1−
[
1−

(
1−

n∏
i=1

[1− ψδµ(µi)]
)] 1

n
} 1
δ
,
n∏
i=1

ψ
1
n
ν (νi)

〉)
(by Definition 4)

= ψ−1
(〈{

1−
n∏
i=1

[1− ψδµ(µi)]
1
n

} 1
δ
,
n∏
i=1

ψ
1
n
ν (νi)

〉)

=

〈
ψ−1µ

({
1−

n∏
i=1

[1− ψδµ(µi)]
1
n

} 1
δ

)
, ψ−1ν

( n∏
i=1

ψ
1
n
ν (νi)

)〉
.

For example, a kind of natural average is obtained when ψ(x, y) = (x, y) = ψ−1(x, y), that is,

M̃nat =

〈{
1− n

√∏n
i=1(1− µδi )

} 1
δ
, n
√∏n

i=1 νi

〉
.

On the other hand, if we take

ψ(x, y) =
(

[1− exp(−xp)]
1
δ , exp

(
− 1

k
yp
))
,

with k = δ min
16i6n

νpi and p > 0, then

{
[1− exp(−µpi )]

1
δ
}δ

+
[

exp
(
− 1

k
νpi
)]δ

= 1− exp(−µpi ) + exp
(
−

νpi
min
16i6n

νpi

)
6 1− exp(−1) + exp(−1)

= 1.

for all i = 1, 2, ..., n and consequently each ψ(Ãi) is a δ-fuzzy set. Likewise, it turns out the same

outcome if we adopt k = δ max
16i6n

νpi for p < 0. Since ψ−1(x, y) =
(
[− ln(1 − xδ)]

1
p , (−k ln y)

1
p
)
,

then it follows the following power mean for p ∈ R∗:

M̃p =

〈( 1

n

n∑
i=1

µpi

) 1
p
,
( 1

n

n∑
i=1

νpi

) 1
p

〉
.

Under this approach, M̃1 is structured by arithmetic means, M̃2 by quadratic means, M̃−1 by
harmonic means, and so on. Particularly, M̃2 matches the weighted power mean aggregation
operator in Pythagorean fuzzy sets, taking each weight wi = 1

n , for 1 6 i 6 n (Yager &
Abbasov, 2013). It is also well known that the geometric mean is obtained in the limiting case
when p → 0 (see, e.g., Hardy, Littlewood, & Pólya, 1934). By this way it is obtained that

M̃p → M̃0 =
〈
n
√∏n

i=1 µi,
n
√∏n

i=1 νi
〉
, which coincides particularly with the operator $ni=1Ãi (see

Definition 7(ii), Jamkhaneh & Garg, 2018), structured by two geometric means.
In dual mode, it is usual to define the union ∪ni=1Ãi = 〈max16i6n µi,min16i6n νi〉 and

the intersection ∩ni=1Ãi = 〈min16i6n µi,max16i6n νi〉, in intuitionistic fuzzy sets (Atanassov
& Vassilev, 2018), in Pythagoreans (Peng & Yang, 2015), in those of the third type (Begum
& Srinivasan, 2017), and even in the general δ-fuzzy case (Jamkhaneh & Garg, 2018). Now

we have M̃+∞ = limp→+∞ M̃p =
〈

max16i6n µi,max16i6n νi
〉

and M̃−∞ = limp→−∞ M̃p =〈
min16i6n µi,min16i6n νi

〉
. Last observation about the duals M̃+∞ and M̃−∞ provides a com-

plementary notion, where pairs of maxima and pairs of minima also make sense.
After the analysis performed, it remains to verify that M̃ is a δ-fuzzy set. For example, it is

obvious that M̃+∞ is not necessarily δ-fuzzy in a general way. The case M̃nat is verified directly
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from the conditions νδi 6 1 − µδi , for i = 1, 2, ..., n. Let us see below that M̃p is a δ-fuzzy set
for 0 < p < δ. Indeed, this results in δ

p > 1 and thus we can apply the Second Minkowski’s
inequality (Cvetkovski, 2012, Theorem 9.6, p. 99) as follows:

[( 1

n

n∑
i=1

µpi

) 1
p

]δ
+

[( 1

n

n∑
i=1

νpi

) 1
p

]δ
=

( 1

n

) δ
p

[( n∑
i=1

µpi

) δ
p

+
( n∑
i=1

νpi

) δ
p

]

6 n
− δ
p

{
n∑
i=1

[(
µpi
) δ
p +

(
νpi
) δ
p

] p
δ

} δ
p

= n
− δ
p

[
n∑
i=1

(
µδi + νδi

) p
δ

] δ
p

6 n
− δ
p

( n∑
i=1

1
) δ
p

= 1.

Based on the above considerations, it is possible to define the concept of δ-fuzzy mean as
follows:

Definition 8. Let Ã1 = 〈µ1, ν1〉, Ã2 = 〈µ2, ν2〉, ..., Ãn = 〈µn, νn〉 ∈ P̃(X). Let ψ : P̃(X) →
P̃(X) be defined by ψ(〈x, y〉) = 〈ψµ(x), ψν(y)〉, such that ψµ : [0, 1]→ [0, 1] and ψν : [0, 1]→ [0, 1]

are continuous and strictly monotonous functions, so that ψ(Ãi) ∈ P̃(X) for all i = 1, 2, ..., n.

Then, M̃ is a δ-fuzzy mean of Ã1, Ã2, ..., Ãn iff it has the form〈
ψ−1µ

({
1−

n∏
i=1

[1− ψδµ(µi)]
1
n

} 1
δ

)
, ψ−1ν

( n∏
i=1

ψ
1
n
ν (νi)

)〉
and also it is a δ-fuzzy set.

As pointed out by Marichal (Marichal, 2000), for real increasing means, the Kolmogorov-
Nagumo reflexive property is equivalent to the Cauchy internality (Cauchy, 1821). Internality
requires a total order because of this, in A-IFS model, a total order has been defined relating
the aggregation functions with score and accuracy functions (Xu & Yager, 2006). This approach
has raised obstacles related to monotony, which has recently been overcome by employing the
 Lukasiewicz triangular norm (Wang & Mendel, 2019). In our approach, the binary relation ≺
is a preorder, compatible with (P̃(X),⊕, ∗) as right R>0-semimodule. We do not have a total
order, however the following boundedness property for a δ-fuzzy mean subsists.

Theorem 10. Let M̃ a δ-fuzzy mean of Ã1, Ã2, ..., Ãn ∈ P̃(X), where X = [a, b] ⊂ R. It is
fulfilled that

min
16i6n

{
d
(
Ãi, Õ

)}
6 d
(
M̃, Õ

)
6 max

16i6n

{
d
(
Ãi, Õ

)}
.

Proof. We know that d(Ã, Õ) = 1 − 1
(b−a)

∫ b
a ν

δ
Ã

(x)dx. Applying this identity for Ã = Ãi (1 6

i 6 n) and Ã = M̃ , we get

1− 1

(b− a)

∫ b

a
max
16i6n

νδi (x)dx 6 1− 1

(b− a)

∫ b

a
νδ
M̃

(x)dx 6 1− 1

(b− a)

∫ b

a
min
16i6n

νδi (x)dx

i.e., ∫ b

a
min
16i6n

νδi (x)dx 6
∫ b

a
νδ
M̃

(x)dx 6
∫ b

a
max
16i6n

νδi (x)dx

which is obvious since δ > 0 and min
16i6n

νi(x) 6 ν
M̃

(x) 6 max
16i6n

νi(x) for all x ∈ [a, b].
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We can see that in the monoid (R>0,+) it is permissible to define a 6 b iff d(a, 0) 6 d(b, 0),
where d(a, b) = |a − b|. Now, analogously to the previous result, for a sequence of real and
non-negative numbers a1, a2, ..., an, it is true that min16i6n{|ai − 0|} 6 |M(a1, a2, ..., an) −
0| 6 max16i6n{|ai − 0|}. Which is another way of expressing the internality of a real mean
M(a1, a2, ..., an), but in the language of distance.

5 An application example

Next, we present an application example. A panel of 10 experts responds by means of two scales
made up of integers from 0 to 10, to what extent they agree or disagree, with regard to the
year corresponding to the period 2026-2030, where it is convenient to make a certain business
investment. In this strategic forecasting, the value 10 indicates that the expert completely
agrees, while 0 means totally disagree. The five-year period analyzed is reasonable and it is
expected that the experts will not select extreme values. All the data are normalized, dividing
the reactions of each expert by 10. As usually happens in this type of study, the experts do
not always respond 1 − p to the statement ¬A, when they have previously responded p to the
statement A (Cruz & Cables, 2022). The Table 1 contains the results of the empirical study
carried out. Obviously, most of the data do not fit the intuitionistic fuzzy model, since the

Table 1: Three δ-fuzzy means in expert opinion processing

2026 2027 2028 2029 2030

Expert µi νi µi νi µi νi µi νi µi νi
1 0.4 0.6 0.1 0.8 0.9 0.4 0.5 0.5 0.7 0.6
2 0.9 0.3 0.3 0.8 0.9 0.3 0.2 0.2 0.7 0.7
3 0.4 0.9 0.7 0.6 0.9 0.1 0.5 0.5 0.4 0.8
4 0.6 0.4 0.7 0.5 0.4 0.2 0.5 0.7 0.5 0.8
5 0.1 0.1 0.2 0.1 0.5 0.3 0.6 0.8 0.1 0.4
6 0.8 0.5 0.3 0.5 0.4 0.4 0.6 0.7 0.8 0.3
7 0.5 0.7 0.6 0.2 0.8 0.2 0.7 0.6 0.5 0.8
8 0.5 0.7 0.3 0.6 0.9 0.6 0.5 0.3 0.2 0.7
9 0.3 0.7 0.6 0.6 0.7 0.2 0.4 0.6 0.4 0.7
10 0.2 0.5 0.3 0.5 0.5 0.4 0.6 0.3 0.3 0.5

M̃nat 0.62 0.47 0.51 0.45 0.79 0.28 0.54 0.48 0.57 0.60

M̃1 0.47 0.54 0.41 0.52 0.69 0.31 0.51 0.52 0.46 0.63

M̃2 0.53 0.58 0.46 0.56 0.72 0.34 0.53 0.55 0.51 0.65

respective sums in the responses are generally different than 1. The Pythagorean fuzzy model
fits the most, with the exception of expert No 8 for the year 2028, where 0.92 + 0.62 > 1. The
minimum value of δ, such that 0 6 δ 6 1, is δ = 3. Therefore, it is necessary to average using
means suitable for a 3-fuzzy model, such as M̃nat and M̃p, where 0 < p < 3.

The last three rows in Table 1 show the results of the calculations for M̃nat, M̃1, and M̃2.
The most convenient year is 2028, where the panel of experts has a higher level of agreement
and a lower level of disagreement, in all the calculated means. In the case of M̃1, the uncertainty
levels are the highest (closer to 1). For M̃nat and M̃2, the year of least uncertainty is also 2028
(π = 0.79 and π = 0.84, respectively).
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6 Conclusion

The present investigation deals with a δ-fuzzy generalization of the A-IFS model, based on the
underlying algebraic structure. We show that (P̃(X),⊕, ∗,≺) construct is a pre-ordered and
bounded left R>0-semimodule. This algebraic approach has allowed us to discuss certain metric
properties and also to show a new way to define the notion of fuzzy mean. For a new study it is
suggestive to explore the quotient set that results from the relationship between sets with equal
distance from Õ, which produces a poset. On the other hand, it is also possible to apply these
results in studies related to multi-criteria decision-making problems, where it is convenient to
extend the analysis to weighted δ-fuzzy means. From a practical point of view, this research
also illustrates how to select an appropriate δ-fuzzy mean, depending on the fuzzy model that
best fits experimental data.
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Northeast (Argentina).

References

Atanassov, K.T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96. doi:
10.1016/S0165-0114(86)80034-3

Atanassov, K.T. (2012). On Intuitionistic Fuzzy Sets Theory. Berlin: Springer-Verlag. doi:
10.1007/978-3-642-29127-2

Atanassov, K.T., Vassilev, P. (2018). On the intuitionistic fuzzy sets of n-th type. In A.E. Gawȩda
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